Selasa, 13 November 2012
Selasa, 18 September 2012
Soal No 6
6.
Show that (i)
̴x eq ̴(xvy) and (ii) x eq (x→y) →(x→y) from these
find the equivalent formulae of x˄y, x→y and x↔y as iterated compositions of
joint negations
Answer
: (i) ̴ x eq x→x
Download : Jawaban Soal no 6
Senin, 17 September 2012
Soal no 5
5.
Corresponding to the statement 'neither X nor Y', the joint
negation
X i Y is defined by the truth table.
Show that (i) X i Y eq ~ (X v Y) and (ii) X eq (X I X) I (X I X).
download : jawaban soal no 5
Contoh Soal
Buktikan [(p → q) ˄p] → q ek T
Bukti :
Jelas : [( p → q ) ˄ p ] → q
≡ [( ~p v q) ˄ p ] → q (hk. implikasi)
≡~ [( ~p
v q ) ˄ p ] v q (hk. implikasi)
≡ [~(~p
v q ) v ~p ] v q (hk. DM)
≡ [(~(~p)
^ ~q ) v ~p ] v q (hk.
DM)
≡ [(p ^ ~q
) v ~p
] v q (hk. Komplemen)
≡ [(p v ~p
) ^(~q
v ~p) ] v q (hk. Distributis )
≡ [T ^(~q
v ~p) ] v q (hk. Komplemen)
≡ (~q v ~p) v
q (hk. Identitas)
≡ ~q v (
~p v q) (hk. Asosiatif)
≡ ~q v (
q v ~p) (hk. Komutatif)
≡(~q v q)
v ~p (hk.Asosiatif)
≡ T v ~p (hk. Komplemen)
≡ T (hk. Identitas)
Jadi [(p → q) ˄p] →
q ek T BENAR! yeeeeeeeeeeeeeby Kelompok 6
File : Pembuktian Contoh Soal ( kel 6 )
Mind Map Statment Calculus
Peta konsep diatas , dibuat berdasarkan hasil dari presentasikan kel 1yaitu materi Logika Matematika.
Link Download (pdf) :Peta Konsep Logika ( kelompok 6)
Langganan:
Komentar (Atom)


