SELAMAT DATANG DI BLOG KAMI

Selasa, 18 September 2012

Soal No 6

6.    Show that (i)   ̴x eq   ̴(xvy) and (ii) x eq (x→y) →(x→y) from these find the equivalent formulae of x˄y, x→y and x↔y as iterated compositions of joint negations
Answer : (i)    ̴ x eq x→x
 
Download : Jawaban Soal no 6

Senin, 17 September 2012

Soal no 5


5.
Corresponding to the statement 'neither X nor Y', the joint negation
X i Y is defined by the truth table.
Show that (i) X i Y eq ~ (X v Y) and (ii) X eq (X I X) I (X I X).
download : jawaban soal no 5

Contoh Soal


Buktikan [(p q) ˄p] → q ek T
Bukti :
Jelas :    [( p  q ) ˄ p ] → q
                [( ~p  v  q) ˄ p ] → q                       (hk. implikasi)
                ≡~ [( ~p  v  q ) ˄ p ] v q                      (hk. implikasi)
                [~(~p  v  q ) v ~p ] v q                     (hk. DM)
                [(~(~p)  ^  ~q ) v ~p ] v q                (hk. DM)
                [(p  ^  ~q ) v ~p ] v q                       (hk. Komplemen)
                [(p  v  ~p ) ^(~q v  ~p) ] v q            (hk. Distributis )
                [T ^(~q v  ~p) ] v q                          (hk. Komplemen)
                ≡ (~q v  ~p)  v q                                  (hk. Identitas)
                ≡ ~q v ( ~p  v q)                                  (hk. Asosiatif)
                ≡ ~q v ( q  v ~p)                                  (hk. Komutatif)
                ≡(~q v q) v  ~p                                    (hk.Asosiatif)
                ≡ T v ~p                                               (hk. Komplemen)
                ≡ T                                                       (hk. Identitas)
Jadi [(p q) ˄p] → q ek T BENAR! yeeeeeeeeeeeee
by Kelompok 6

File : Pembuktian Contoh Soal ( kel 6 )

Mind Map Statment Calculus


Peta konsep diatas , dibuat berdasarkan hasil dari presentasikan kel 1yaitu materi Logika Matematika.

Link Download (pdf) :Peta Konsep Logika ( kelompok 6)